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Recurrence Equations for the Computation of 
Correlations in the 1]r 2 Quantum Many-Body System 
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In a previous paper the two-particle distribution function and one-particle den- 
sity matrix for the quantum many-body system with the 1/r 2 pair potential have 
been expressed as limiting cases of Selberg correlation integrals. Recurrence 
equations are derived which allow rapid evaluation of these multidimensional 
integrals. The exact results for the two-particle distribution are compared with 
the harmonic approximation. 

KEY WORDS: Selberg integrals; correlation functions; solvable models; I/r 2 
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1. INTRODUCTION 

The Schr6dinger operator 

1 ,11,  
j=1 ~vj + l<.j<k<.N sin=[zc(Ok--Oj)/L] 

describing N particles on a line of length L interacting via the 1/r 2 pair 
potential with periodic boundary conditions has the exact ground-state 
wave function (1) 

where 

1 
0o(01 ..... ON) = C----~ [ I  Isin zc(0~- Oj)/L[ ~/2 

l < ~ j < k ~ N  
(1.2a) 

7 = l + ( l + 2 g )  1/2, g~> --1/2 (1.2b) 
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and C N denotes the normalization. As written, the state describes bosons; 
however, if multiplied by 1-[l~<j<k~<u sgn(0k-- 0j), the Schr6dinger equa- 
tion is still satisfied and the state describes fermions. 

The wave function (1.2) is of the BDJ type with pair potential 

V(O - 0') = - l o g  [sin[re(0 - O')/L][ (1.3) 

and thus corresponds to the Boltzmann factor of the one-component 
log-potential Coulomb gas confined to a circle of circumference length L. 
It is known/2) that (1.2a) is the unique BDJ wave function which correctly 
describes the low-energy excitations 

A(k) ~ hck as k ~ 0 (1.4) 

of an arbitrary one-component, one-dimensional quantum fluid. In this 
interpretation 

7 = 2mc/zcph (1.5) 

where m denotes the mass of the particles. 
When ~ is even, the two-particle distribution function (which is the 

same for both bosons and fermions) 

hN(O -- 0') := N ( N -  1) [ dO3.., dOu(t~o(O, 0', 03,..., ON) 2 (1.6) 
"J O 

is a trigonometric polynomial in cos[2n(O-O')/L] of order 7 ( N - 2 ) / 2 .  
Similarly, when y/2 is even (odd), the one-body density matrix 

p(~)(O_O').=N(t~=2 f~ dOl)l/io(O, O2,...,ON) l~o(O',O 2 ..... ON) (1.7) 

for (s)=(f)ermions and ( s )=  (b)osons, respectively, is a trigonometric 
polynomial in cos[2rc(0 - O')/L]. 

A study of the integrals (1.6) and (1.7) has been made recently in ref. 3. 
The first step in this work was to note that the integrals are limiting cases 
of the so-called Selberg correlation integrals. If we denote 

N 

D~,,).2,~(tl ..... tN) := I~ t~ 1 1( 1 --tl) ~2-1 I~ Itk--tjl; (1.8) 
l = 1  l<~j<k<~N 

then the (normalized) Selberg correlation integrals are defined as 

SN, m(21, 22, 2; X 1,..., Xm) 

1 ( f i .  I ldt ,  f i  (t,-Xp)]D~,~2.;.(tl ..... tN) (1.9a) 
:-- CN m , \ l - 1  "J0 / p = l  
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where 

CN, m = dt t  t'~ D~+r tN) 

In terms of these integrals it was shown that 

(1.9b) 

h N ( O - - O '  ) -- 

X e ,~,i~(o - O')(N-- 2)/N [ 7 ( N -  2)/2] ! [(7/2)! ] 2 
(TN/2)t 

x SN-2,v ( 7 ( N -  1) ) 2 ,7 + 1, 7; e2"i"(~ .... e2,i,(o O')/u 

and 

p(~)(O - 0') = t/e -~i"(~/2)(~ 0,) (7/2)! (7N/2)! 
[7(N+ 1)/2]! 

where 

(1.1o) 

_ _ ~ _ , ~ + l ,  7 ;e2 , , , (o -o ) /u , . . . , e2 , i , (o  O')/U (1.11) 

:= N I L  (1.12) 

The significance of these formulas is that the Selberg correlation 
integrals have been evaluated in terms of a new class of multivariable 
hypergeometric functions based on Jack symmetric polynomials. (4) In the 
special cases (1.10) and (1.11), when all the arguments are equal, the 
explicit power series expansion of the hypergeometric function, and thus a 
formula for the coefficients of the trigonometric polynomials representing 
hu(O -- 0 ')  and p~)(O - 0') ,  can be given. (3) Unfortunately, the resulting for- 
mula is unsatisfactory from the computational viewpoint, as the coefficient 
of x k ( x  = e 2"i~(~ O')/u) involves a sum over all partitions of k into 7 parts, 
and thus the number of operations required to compute each coefficient 
increases factorially in both k and 7- 

The main purpose of this paper, which is contained in Section 2, is to 
derive and implement recurrence equations which uniquely define the 
Selberg correlation integrals (1.9) in the case xl = x2 . . . . .  xm = x. These 
recurrences generate the coefficients of the power series after only O((TN) 2) 
operations. The method we use is adapted from the work of Aomoto (5'6) 
and Edelman. (7) 
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In Section 3 the two-particle distribution function (1.6) is computed in 
the harmonic approximation and the exact and approximate calculations 
are compared. 

2. THE RECURRENCES 

2.1. Derivat ion 

Let us first introduce some notation. Define 

I (P~)[g]  = C  d t l " "  dtN gf~l';~2"'(tl ..... tN; ~' p' x )  (2 .1a )  

where 
F,h,&,~(tl ..... tu; c~, p, x)  

: =  ( t l - - X )  ~ ' '  " ( tp--  X) ~ (tp+ l -- X) ~-1 . . .  ( tN- -  X) ~-1 

• D~x,~2,r(tl ..... tN) (2.1b) 

and c is independent of x, and adopt the abbreviation 

I(p=)[1 ] =P~)  (2.2) --p 

Comparison of (2.1) and (1.9) shows that for the choice of c such that 
when x = 0, 1(~)= 1, we have --p 

I (~ ) -S  ~2 22, 2;x ..... x) (2.3) N --  N, Tk 17 

The recurrences given in the following result uniquely specify I~  ), and 
provide a practical method for its evaluation. 

Proposi t ion 1. We have 

I ~  1) = I(o~) (2.4) 

and 

d I ( p ~ ) + D x ( x _ l ) i ~ )  - (2.5) -p+ l l(~) = - ( A x  + B) I(p~) + C x ( x - - 1 ) - ~ x  1 

where 

A =  [ 2 1 + 2 2 + 7 ( N -  p -  1 ) + 2 ( c t -  1)] /E 

B =  - [ 2 1 -  1 + ~ +  ( 7 / 2 ) ( N - p -  1)] /E 

C =  1 / [ ( N - - p )  E]  

D = p[7/2 + or p ) ] / E  

(2.6a) 

(2.6b) 

(2.6c) 

(2.6d) 
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with 

E--  21 + 22 + 7 ( N -  p/2 - 1) + ~ - 1 (2.6e) 

The recurrence (2.4) follows immediately from the definitions (2.1) and 
(2.2). The proof of (2.5) can conveniently be broken up into a number of 
lemmas. 

k e m m a  1 : 

I(~)r t ] = r(~) + XI(p ~) p L p + l  ~ p + l  

Ip  L t p + I  - 

2 Ip  , 

(l_ 
X p + l  - -  ~_.~ ~ 2  p4-1~ 

t p + l - - t  k I (~) . X I ( ~ )  ( I p + l + ' ~  p , 

k <<.p 

k > p + l  

k < p + l  

k > p + l  

(2.7) 

(2.8a) 

(2.8b) 

(2.9) 

and 

[ ' ]  d i(~) = _ p a i ~ ) _ l  _ ( N - -  p ) ( a  -- 1~ 1 ~) tp +1 -- , _p (2.10) 
dx  p X 

Proof .  Equation (2.7) follows from the definition of IC2) and the 
simple manipulation tp + 1 = ( t p  + 1 - x )  + X. To derive (2.8b), interchange 
tp+1 and tk to deduce that 

P tp+ 1 - tk -P i - -  t 

Taking the arithmetic mean of both sides gives the required result. 
To derive (2.8a), note 

P L t p + i -  tkA tp+1--tp 

--p--1 Ltp~l - - - tpA x l p _ ,  L t p + l -  tpA (2.11b) 

The first term on the right-hand side of the second equality vanishes, as the 
integrand is antisymmetric under the interchange tp ~-, tp + 1. For the second 
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term we use (2.8b) and thus obtain (2.8a). Similar arguments suffice to 
establish (2.9). To derive (2.10), we note 

1 ( a - l )  2 -p  d l ( ~ ]  : - ~  I(p ~) -- 1(~) 
dx-P j=l j=p+l 

= - p ~ / ~ - ' l - ( ~ -  13 E /~' 
j = p + l  

The required result now follows by renaming the variables of integration in 
the last sum. | 

Lemma 2. We have 

-P 1 -- tp + 

x d l ( ~ _ x  p + r<~) (2.13) 
a p _  1 N - p d x  -p 

Proof. Let F=F~l.~2,~(t~ ..... t N ; ~ , p , x  ) be given by (2.1b). By the 
fundamental theorem of calculus, for all 21 and 2 2 large enough so that 
tp+~Fvanishes at tp+ 1 =0 and 1, 

dt l . . ,  d t N - -  (tp+ ~f) = 0 (2.14) 
Otp+ 1 

Performing the partial derivative and simple manipulation gives 

2 , ( ~ ) + ( 2 2 - 1 )  (~] (22-1)  (~)[ 1 ] l ip  [p -- Ip 1 --tp + 1' 

k = l  L'tpTi__t; + ( ~ - l ) I p  Ltp+ 1 - x  
kv~p+l 

The result (2.13) now follows by use of Lemma 1 and rearrangement. | 

[ .emma 3, We have 

-- 21+22+ 7 N - ~ - I  + e - - 1  -p+l 

= {(,~1 + 1 ) x +  ( , t2-  ] t ( x +  1)+  x ~ ( N -  p - 1)+ 2x(~ - 1)} ~r~ 

x 2 d i ( ~  /~px 2 pc~x 2~ 
N - - p a x  p --(---f-+'-N'~-- p )  I~)1 

[ ' ]  
-- (s - 1) I~p =) 1 - t p  + 1 (2.16) 
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Proof. Proceeding analogously to (2.14), we note 
fundamental theorem of calculus, 

f]dtl...f]dtN O----~{(tp+I)2F}=O Otp + 1 
Performing the partial derivative gives 

(~1+ 1)(a) (a)~_(tp+l)21~._ 
I s [ t p + , ] - ( 2 z - 1 ) I p  Ll~_ t~+  j ? 

+ (~ -  I) I~ ~ L t p + ~ - x j  

Now, 

and 

45 

that from the 

N [- (tp+l)2 l 
2 I(p ~, - - - - -  k=l Ltp+l--tkJ 

k r  

(2.17) 

(2.18) 

I{~)~ (tP+x)2l k l~tp+lj-Ip(~)I (t'+l-1)(t'+l + l)+ 

------Ip(~)--I(p~)[tp+~]+ I;(~)I 1 1 1  - - t p  + 1 (2.19) 

i r  r ] 1 L's + , -  t~j = I ,  t,--T ; -  ,--;- 

"p+ 1 gp+T --  tk Ltp+ I -- tk 

[(~ 1 - x A  I p ( C ~ ) [ ( t p + l - X ) ( t p + I A r - x ) J r x 2 1  . . . . .  
tp+ I - x 

=xI, +I, [ l ,+l]+x2I~ ~) ts+l-X 

terms on the right-hand 

(2.21) 

side of (2.19)-(2.21) and the first term in 

2.2. Implementat ion  

From the definitions (2.2) and (2.1) we note that I~ ~) is a polynomial 
in x of degree ( e -  1) N + p. From Proposition 1, these polynomials can be 

The 
(2.18) can be further simplified using Lemma 1. The formula (2.16) follows 
after substituting the resulting expressions back in (2.18). | 

The recurrence relation (2.5) of Proposition 1 follows immediately 
from Lemmas 2 and 3 by substituting (2.13) in (2.16) and rearranging. 
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calculated recursively, starting with the initial condition I(ol)= 1 and using 
(2.5) to calculate I~i),I(21),..., I~  ) in order. From (2.4), I(ul)=I(o 2), so now 
I~2),..., IX ) can be calculated from (2.5), etc. I~  ) can thus be calculated after 
yN applications of (2.5), which could be carried out on a computer algebra 
package. 

Alternatively, Eqs. (2.4) and (2.5) can be used to derive recursive 
equations for the coefficients in the polynomial 

(a--1)N+p 
I(e~) = ~2 a(~)(k, p) x k (2.22) 

k = O  

Yet another method is to use (2.4) and (2.5) to compute I(p ~) for a specific 
value of x (Xo, say). This requires calculating 

dr 
- - I  (~) ( r = l ,  2 ..... (c~- 1 ) N + p )  (2.23) 
d x  r p 

at x =  Xo, which can be done recursively from (2.5) using Leibnitz's rule. 
Both these methods require O((7N) 2) operations. 

In practice we have implemented the two methods of the above 
paragraph to calculate I ~  ) and thus, from (2.3), SN, y" F r o m  (1.10) we must 
calculate SN,~ with N ~  N - 2 ,  21 = - ~ ( N -  1)/2, and 22 = 7 + 1 in order to 
calculate the two-particle distribution function, while from (1.11) we see 
that the calculation of the density matrix requires SN,~ with 21 = - N y / 2  
and it2 = 7/2 + 1. As an illustration, for N =  14 and 7 = 8 and 12 we have 
computed hN(O) in this way and plotted the corresponding graphs in Fig. 1. 

With double-precision arithmetic, catastrophic cancellation restricted 
the calculations to 7N ~< 200. This problem can be eliminated by the use of 

2.2 

136 

1.32 

.88 

.44 

0 
1 2 3 '~ 5 8 

Fig.  1. P lo t  o f  hN(O) with  r / =  1 for  N =  14 a n d  7 = 8 (full line), ~ = 12 (da shed  line). 



1] r  2 Quantum Many-Body Equations 47 

a high-precision computing package. Also, it was found that the large-N 
behavior of hN(O) was accurately given by N =  12 for 0 < 3, although the 
accuracy deteriorates slightly as ~ is increased. 

3. H A R M O N I C  A P P R O X I M A T I O N  

Krivnov and Ocvhinnikov (8) applied a harmonic approximation to 
the Hamiltonian (1.1) and gave the corresponding expression for the two- 
particle distribution function. In this section we will compute the 
two-particle distribution function in the harmonic approximation directly 
from the ground-state wave function (1.2a) (see also ref. 9) and compare it 
to the exact evaluation of the previous section. 

Let us consider (1.2a) as the Boltzmann factor for the classical 
gas with pair potential (1.3). Since the potential is repulsive, in the 
low-temperature, y ~ 0 limit the particles tend to distribute themselves at 
equal spacings L/N apart. Thus, if we make the ordering 

0 1 < 0 2 < - - . < 0 N  (3.1) 

then the ground-state configuration is 

Oj=v+(j -1)L/N,  where O<~v~L/N (3.2) 

In the harmonic approximation the total potential energy of the classical 
gas is expanded up to second order about the equilibrium points (3.2), and 
the two-particle distribution function is written as 

N o o  c c  

hOvha)(o)--~-(./Q) 2 f d O l . . . f  dO N 
p = 2  " - - o o  - - ~  

x 6(0~ ) 6(Op - O) exp( - 70 r//O/2) (3.3a) 

where 

with 

Q dO1. . . f~  dONS(O1)exp(-7OrHO/2) (3.3b) 

O=(Oj-(j-1)L/N)j=I,...,N and H:=[ajkJj, k=l,...,N (3.3C) 

QZ) 
2 N-- 1 1 

ajj = ,~= i sin2 zm/N' 

( L )  2 1 
ajk = -- sin 2 7r(j -- k)/N ( j~k )  

(3.3d) 

822/72/1-2-4 
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The integrals (3.3a) and (3.3b) can be transformed by (i) changing 
variables 0 j - ( j - 1 ) L / N ~ - - ,  ~bj, (ii) using the integral representation 

3(X) = f 03oo e2~ixt dt (3.4) 

and (iii) changing variables ~b = Uy, where 

r ' 2 n i j k / N q  and Y = ( Y j ) j = O , . . . , N - - 1  (3.5) U =  kc  Aj ,  k = O , . . . , N - - I  

This gives 

N l f o o  foo  h~a)(O) = (q/Q) dt~ dt2 exp(-2zaOt2) 
p = l  --03 --03 

F x dyo exp[2zciyo(tl + t2)/x//N] 
--03 

x d Re(yj) d Im(y j ) exp ( -y2 j  ly/2/2) 
j = 2  --03 --03 

x exp{ZTziyj [tl + t2 exp(2~zipj/N)-]/~-N}~ m (3.6a) 
/ 

where 

and 

Q=I dt I dy~176 03 dRe(yj)  a lm(y j )  
--oo --oo --cx] --cx~ 

x e-~# lYJl2/2e2nityj/'/-N) 1/2 (3.6b) 

(L )2  N~ l 1--cos27rjn/N (3.6c) 
2j = ~ = ~ sin 2 ~n/N 

The integration over Yo gives x/-N6(tl + t2) in (3.6a) and x ~ 6 ( t l )  in 

(3.7a) h a,(o) .2 = e Y(P -- qx)2/(4~2f(P)) 

p=l \47tf(p)J 

(3.6b), so the integration over t I can be performed immediately. The 
integrations over y, ,..., YN 1 are now all independent Gaussians, which can 
be computed by completing the square. The remaining integration over t2 
is also of the Gaussian type. We thus obtain 



where 

2.7 

~/2 U ~  1 -- COS 2npj/N 
f(p) = ~ j = ,  ).j (3.7b) 

In the limit N ~ o% j /N  fixed 

2j ~ t/2 ~, 1 -- cos 2gjn/N 
t~ 2 

= ( ~ ) 2  J<{ (3.8) 

(note that 2 j=  2j+~v). Hence, from (3.7b), 

1 r 1/2 1 - c o s 2 ~ p t  
f(P) ~ ~-5 Jo t -  t 2 dt (3.9) 

and with h(h")(0) denoting limN~ oo h~a)(O), from (3.7a), 

y ~1/2 e -~(p-~~ (3.10) 
p=--oo  

p~O 

The formula (3.10) is particularly easy to evaluate. We find that 
h(ha)(O) is a very good approximation to h(u ~ for ?/>20, with the corre- 
sponding graphs being difficult to distinguish, as is illustrated in Fig. 2. 

.5 l 1.5 2 2.5 

2.1.6 

1.U2 

1.D8 

.54 

0 
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Fig. 2. Plot of hN(O ) (dashed line) and h(ha)(0) (full line) with q = 1, N =  6 for y = 20. 
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